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Abstract

Automated affective computing in the wild setting is a challenging problem in computer vision. Existing

annotated databases of facial expressions in the wild are small and mostly cover discrete emotions (aka the

categorical model). There are very limited annotated facial databases for affective computing in the continuous

dimensional model (e.g., valence and arousal). To meet this need, we collected, annotated, and prepared for

public distribution a new database of facial emotions in the wild (called AffectNet). AffectNet contains more

than 1,000,000 facial images from the Internet by querying three major search engines using 1250 emotion

related keywords in six different languages. About half of the retrieved images were manually annotated for the

presence of seven discrete facial expressions and the intensity of valence and arousal. AffectNet is by far the

largest database of facial expression, valence, and arousal in the wild enabling research in automated facial

expression recognition in two different emotion models. Two baseline deep neural networks are used to classify

images in the categorical model and predict the intensity of valence and arousal. Various evaluation metrics

show that our deep neural network baselines can perform better than conventional machine learning methods

and off-the-shelf facial expression recognition systems.
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1 INTRODUCTION

Affect is a psychological term used to describe the outward expression of emotion and feelings. Affective

computing seeks to develop systems and devices that can recognize, interpret, and simulate human affects

through various channels such as face, voice, and biological signals [1]. Face and facial expressions are un-

doubtedly one of the most important nonverbal channels used by the human being to convey internal emotion.

There have been tremendous efforts to develop reliable automated Facial Expression Recognition (FER)

systems for use in affect-aware machines and devices. Such systems can understand human emotion and

interact with users more naturally. However, current systems have yet to reach the full emotional and social

capabilities necessary for building rich and robust Human Machine Interaction (HMI). This is mainly due to

the fact that HMI systems need to interact with humans in an uncontrolled environment (aka wild setting)

where the scene lighting, camera view, image resolution, background, users head pose, gender, and ethnicity

can vary significantly. More importantly, the data that drives the development of affective computing systems

and particularly FER systems lack sufficient variations and annotated samples that can be used in building such

systems.

There are several models in the literature to quantify affective facial behaviors: 1) categorical model,

where the emotion/affect is chosen from a list of affective-related categories such as six basic emotions

defined by Ekman et al. [2], 2) dimensional model, where a value is chosen over a continuous emotional

scale, such as valence and arousal [3] and 3) Facial Action Coding System (FACS) model, where all possible

facial actions are described in terms of Action Units (AUs) [4]. FACS model explains facial movements and

does not describe the affective state directly. There are several methods to convert AUs to affect space (e.g.,

EMFACS [5] states that the occurrence of AU6 and AU12 is a sign of happiness). In the categorical model,

mixed emotions cannot adequately be transcribed into a limited set of words. Some researchers tried to define

multiple distinct compound emotion categories (e.g., happily surprised, sadly fearful) [6] to overcome this

limitation. However, still the set is limited, and the intensity of the emotion cannot be defined in the categorical

model. In contrast, the dimensional model of affect can distinguish between subtly different displays of affect

and encode small changes in the intensity of each emotion on a continuous scale, such as valence and arousal.

Valence refers to how positive or negative an event is, and arousal reflects whether an event is exciting/agitating

or calm/soothing [3]. Figure 1 shows samples of facial expressions represented in the 2D space of valence and

arousal. As it is shown, there are several different kinds of affect and small changes in the same emotion that

cannot be easily mapped into a limited set of terms existing in the categorical model.

The dimensional model of affect covers both intensity and different emotion categories in the continuous
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Fig. 1. Sample images in Valence Arousal circumplex

domain. Nevertheless, there are relatively fewer studies on developing automated algorithms in measuring

affect using the continuous dimensional model (e.g., valence and arousal). One of the main reasons is that

creating a large database to cover the entire continuous space of valence and arousal is expensive and there are

very limited annotated face databases in the continuous domain. This paper contributes to the field of affective

computing by providing a large annotated face database of the dimensional as well as the categorical models

of affect.

The majority of the techniques for automated affective computing and FER are based on supervised machine

learning methodologies. These systems require annotated image samples for training. Researchers have created

databases of human actors/subjects portraying basic emotions [7], [8], [9], [10], [11]. Most of these databases

mainly contain posed expressions acquired in a controlled lab environment. However, studies show that posed

expressions can be different from unposed expressions in configuration, intensity, and timing [12], [13]. Some

researchers captured unposed facial behavior while the subject is watching a short video [14], [15], engaged

in laboratory-based emotion inducing tasks [16], or interacted with a computer-mediated tutoring system [17].

Although a large number of frames can be obtained by these approaches, the diversity of these databases is

limited due to the number of subjects, head position, and environmental conditions.

Recently, databases of facial expression and affect in the wild received much attention. These databases are

either captured from movies or the Internet, and annotated with categorical model [18], [19], [20], dimensional

model [21], and FACS model [22]. However, they only cover one model of affect, have a limited number

of subjects, or contain few samples of certain emotions such as disgust. Therefore, a large database, with a

large amount of subject variations in the wild condition that covers multiple models of affect (especially the

dimensional model) is a need.
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To address this need, we created a database of facial Affect from the InterNet (called AffectNet) by querying

different search engines (Google, Bing, and Yahoo) using 1250 emotion related tags in six different languages

(English, Spanish, Portuguese, German, Arabic, and Farsi). AffectNet contains more than one million images

with faces and extracted facial landmark points. Twelve human experts manually annotated 450,000 of these

images in both categorical and dimensional (valence and arousal) models and tagged the images that have any

occlusion on the face. Figure 1 shows sample images from AffectNet and their valence and arousal annotations.

To calculate the agreement level between the human labelers, 36,000 images were annotated by two human

labelers. AffectNet is by far the largest database of facial affect in still images which covers both categorical

and dimensional models. The cropped region of the facial images, the facial landmark points, and the affect

labels will be publicly available to the research community1. Considering the lack of in-the-wild large facial

expressions datasets and more specifically annotated face datasets in the continuous domain of valence and

arousal, AffectNet is a great resource which will enable further progress in developing automated methods for

facial behavior computing in both the categorical and continuous dimensional spaces.

The rest of this paper is organized as follows. Section 2 reviews the existing databases and state-of-the-art

methods for facial expression recognition with emphasis on the dimensional model and in the wild setting

databases. Section 3 explains the process of collecting AffectNet images from the Internet and annotating the

categorical and dimensional models. Section 4 presents two different baselines for automatic recognition of

categorical emotions and prediction of dimensional valence and arousal in the continuous space using AffecNet

images. Finally Section 5 concludes the paper.

2 RELATED WORK

2.1 Existing databases

Early databases of facial expressions such as JAFFE [7], Cohn-Kanade [8], [9], MMI [10], and MultiPie [11]

were captured in a lab-controlled environment where the subjects portrayed different facial expressions. This

approach resulted in a clean and high-quality database of posed facial expressions. However, posed expressions

may differ from daily life unposed (aka spontaneous) facial expressions. Thus, capturing spontaneous expres-

sion became a trend in the affective computing community. Examples of these environments are recording

the responses of participants’ faces while watching a stimuli (e.g., DISFA [14], AM-FED [15]) or performing

laboratory-based emotion inducing tasks (e.g., Belfast [16]). These databases often capture multi-modal affects

such as voice, biological signals, etc. and usually a series of frames are captured that enable researchers to work

on temporal and dynamic aspects of expressions. However, the diversity of these databases is limited due to

the number of subjects, head pose variation, and environmental conditions.

Hence there is a demand to develop systems that are based on natural, unposed facial expressions. To

address this demand, recently researchers paid attention to databases in the wild. Dhall et al. [18] released

Acted Facial Expressions in the Wild (AFEW) from 54 movies by a recommender system based on subtitles. The

video clips were annotated with six basic expressions plus neutral. AFEW contains 330 subjects aged 1-77 years

1. Interested researcher can download a copy of AffectNet from: http://mohammadmahoor.com/databases-codes/
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TABLE 1

The Summary and Characteristics of Reviewed Databases in Affect Recognition

Database Database information # of Subjects Condition Affect Modeling

CK+ [9] - Frontal and 30 degree images - 123
- Controlled

- Posed

- 30 AUs

- 7 emotion categories

MultiPie [11]
- Around 750,000 images

- Under multiple viewpoints and illuminations
- 337

- Controlled

- Posed
- 7 emotion categories

MMI [10]
- Subjects portrayed 79 series of facial expressions

- Image sequence of frontal and side view are captured
- 25

- Controlled

- Posed

& Spontaneous

- 31 AUs

- Six basic expression

DISFA [14]
- Video of subjects while watching a four minutes video

- Clip are recorded by a stereo camera
- 27

- Controlled

- Spontaneous
- 12 AUs

SALDB [23], [24]
- SAL

- Audiovisual (facial expression,shoulder, audiocues)

- 20 facial feature points, 5 shoulder points for video

- 4
- Controlled

- Spontaneous

- Valence

- Quantized [23]

- Continuous [24]

RELOCA [25] - Multi-modal audio, video, ECG and EDA - 46
- Controlled

- Spontaneous

- Valence and arousal

(continuous)

- Self assessment

AM-FED [15] - 242 facial videos - 242 - Spontaneous - 14 AUs

DEAP [26]
- 40 one-minute long videos shown to subjects

- EEG signals recorded
- 32

- Controlled

- Spontaneous

- Valence and arousal

(continuous)

- Self assessment

AFEW [18] - Videos - 330 - Wild - 7 emotion categories

FER-2013 [19] - Images queried from web - ⇠35,887 - Wild - 7 emotion categories

EmotioNet [22]
- Images queried from web

- 100,000 images annotated manually

- 900,000 images annotated automatically

- ⇠100,000 - Wild
- 12 AUs annotated

- 23 emotion categories

based on AUs

Aff-Wild [21] - 500 videos from YouTube - 500 - Wild
- Valence and arousal

(continuous)

FER-Wild [20] - 24,000 images from web - ⇠24,000 - Wild - 7 emotion categories

AffectNet

(This work)

- 1,000,000 images with facial landmarks

- 450,000 images annotated manually
- ⇠450,000 - Wild

- 8 emotion categories

- Valence and arousal

(continuous)

and addresses the issue of temporal facial expressions in the wild. A static subset (SFEW [27]) is created by

selecting some frames of AFEW. SFEW covers unconstrained facial expressions, different head poses, age range,

occlusions, and close to real world illuminations. However, it contains only 700 images, and there are only 95

subjects in the database.

The Facial Expression Recognition 2013 (FER-2013) database was introduced in the ICML 2013 Challenges in

Representation Learning [19]. The database was created using the Google image search API that matched a set

of 184 emotion-related keywords to capture the six basic expressions as well as the neutral expression. Images

were resized to 48x48 pixels and converted to grayscale. Human labelers rejected incorrectly labeled images,

corrected the cropping if necessary, and filtered out some duplicate images. The resulting database contains
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35,887 images most of which are in the wild settings. FER-2013 is currently the biggest publicly available facial

expression database in the wild settings, enabling many researchers to train machine learning methods such

as Deep Neural Networks (DNNs) where large amounts of data are needed. In FER-2013, the faces are not

registered, a small number of images portray disgust (547 images), and unfortunately most of facial landmark

detectors fail to extract facial landmarks at this resolution and quality. In addition, only the categorical model

of affect is provided with FER-2013.

The Affectiva-MIT Facial Expression Dataset (AM-FED) database [15] contains 242 facial videos (160K frames)

of people watching Super Bowl commercials using their webcam. The recording conditions were arbitrary with

different illumination and contrast. The database was annotated frame-by-frame for the presence of 14 FACS

action units, head movements, and automatically detected landmark points. AM-FED is a great resource to

learn AUs in the wild. However, there is not a huge variance in head pose (limited profiles), and there are only

a few subjects in the database.

The FER-Wild [20] database contains 24,000 images that are obtained by querying emotion-related terms

from three search engines. The OpenCV face recognition was used to detect faces in the images, and 66 landmark

points were found using Active Appearance Model (AAM) [28] and a face alignment algorithm via regression

local binary features [29], [30]. Two human labelers annotated the images into six basic expressions and neutral.

Comparing with FER-2013, FER-Wild images have a higher resolution with facial landmark points necessary to

register the images. However, still a few samples portray some expressions such as disgust and fear and only

the categorical model of affect is provided with FER-Wild.

The EmotioNet [22] consists of one million images of facial expressions downloaded from the Internet by

selecting all the words derived from the word “feeling” in WordNet [31]. Face detector [32] was used to

detect faces in these images and the authors visually inspected the resultant images. These images were then

automatically annotated with AUs and AU intensities by an approach based on Kernel Subclass Discriminant

Analysis (KSDA) [33]. The KSDA-based approach was trained with Gabor features centered on facial landmark

with a Radial Basis Function (RBF) kernel. Images were labeled as one of the 23 (basic or compound) emotion

categories defined in [6] based on AUs. For example, if an image has been annotated as having AUs 1, 2, 12 and

25, it is labeled as happily surprised. A total of 100,000 images (10% of the database) were manually annotated

with AUs by experienced coders. The proposed AU detection approach was trained on CK+ [9], DISFA [14],

and CFEE [34] databases, and the accuracy of the automated annotated AUs was reported about 80% on the

manually annotated set. EmotioNet is a novel resource of FACS model in the wild with a large amount of

subject variation. However, it lacks the dimensional model of affect, and the emotion categories are defined

based on annotated AUs and not manually labeled.

On the other hand, some researchers developed databases of the dimensional model in the continuous

domain. These databases, however, are limited since the annotation of continuous dimensions is more expensive

and necessitate trained annotators. Examples of these databases are Belfast [16], RECOLA [25], Affectiva-MIT

Facial Expression Dataset (AM-FED) [15], and recently published Aff-Wild Database [21] which is the only database

of dimensional model in the wild.

The Belfast database [16] contains recordings (5s to 60s in length) of mild to moderate emotional responses
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of 60 participants to a series of laboratory-based emotion inducing tasks (e.g., surprise response by setting off

a loud noise when the participant is asked to find something in a black box). The recordings were labeled

by information on self-report of emotion, the gender of the participant/experimenter, and the valence in

the continuous domain. The arousal dimension was not annotated in Belfast database. While the portrayed

emotions are natural and spontaneous, the tasks have taken place in a relatively artificial setting of a laboratory

where there was a control on lighting conditions, head poses, etc.

The Database for Emotion Analysis using Physiological Signals (DEAP) [26] consists of spontaneous reactions

of 32 participants in response to one-minute long music video clip. The EEG, peripheral physiological signals,

and frontal face videos of participants were recorded, and the participants rated each video in terms of valence,

arousal, like/dislike, dominance, and familiarity. Correlations between the EEG signal frequencies and the

participants ratings were investigated, and three different modalities, i.e., EEG signals, peripheral physiological

signals, and multimedia features on video clips (such as lighting key, color variance, etc.) were used for binary

classification of low/high arousal, valence, and liking. DEAP is a great database to study the relation of

biological signals and dimensional affect, however, it has only a few subjects and the videos are captured

in lab controlled settings.

The RECOLA benchmark [25] contains videos of 23 dyadic teams (46 participants) that participated in a

video conference completing a task which required collaboration. Different multi-modal data of the first five

minutes of interaction, i.e., audio, video, ECG and EDA) were recorded continuously and synchronously. Six

annotators measured arousal and valence. The participants reported their arousal and valence through the

Self-Assessment Manikin (SAM) [35] questionnaire before and after the task. RECOLA is a great database of

the dimensional model with multiple cues and modalities, however, it contains only 46 subjects and the videos

were captured in the lab controlled settings.

Audio-Visual Emotion recognition Challenge (AVEC) series of competitions [36], [37], [38], [39], [40],

[41] provided a benchmark of automatic audio, video and audiovisual emotion analysis in continuous affect

recognition. AVEC 2011, 2012, 2013, and 2014 used videos from the SEMAINE [42] database videos. Each video

is annotated by a single rater for every dimension using a two-axis joystick. AVEC 2015 and 2016 used the

RECOLA benchmark in their competitions. Various continuous affect recognition dimensions were explored

in each challenge year such as valence, arousal, expectation, power, and dominance, where the prediction of

valence and arousal are studied in all challenges.

The Aff-Wild Database [21] is by far the largest database for measuring continuous affect in the valence-

arousal space “in-the-wild”. More than 500 videos from YouTube were collected. Subjects in the videos dis-

played a number of spontaneous emotions while watching a particular video, performing an activity, and

reacting to a practical joke. The videos have been annotated frame-by-frame by three human raters, utilizing a

joystick-based tool to rate valence and arousal. Aff-Wild is a great database of dimensional modeling in the wild

that considers the temporal changes of the affect, however, it has a small subject variance, i.e., it only contains

500 subjects.

Table 1 summarizes the characteristics of the reviewed databases in all three models of affect, i.e., categorical

model, dimensional model, and Facial Action Coding System (FACS).
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TABLE 2

State-of-the-art Algorithms and Their Performance on the Databases Listed in Table 1.

Work Database Method Results

Mollahosseini

et al. [43]

CK+

MultiPie

- Inception based Convolutional Neural Network (CNN)

- Subject-independent and cross-database experiments

- 93.2% accuracy on CK+

- 94.7% accuracy on MultiPie

Shan et al. [44] MMI
- Different SVM kernels trained with LBP features

- Subject-independent and cross-database experiments
- 86.9% accuracy on MMI

Zhang et al. [45] DISFA
- lpnorm multi-task multiple kernel learning

- learning shared kernels from a given set of base kernels

- 0.70 F1-score on DISFA

- 0.93 recognition rate on DISFA

Nicolaou

et al. [24]
SALDB

- Bidirectional LSTM

- Trained on multiple engineered features extracted

from audio, facial geometry , and shoulder

- Leave-one-sequence-out

- BLSTM-NN outperform SVR

- Valence (RMSE=0.15 and CC=0.796)

- Arousal (RMSE=0.21 and CC=0.642)

He et al. [46] RECOLA
- Multiple stack of bidirectional LSTM (DBLSTM-RNN)

- Trained on engineered features extracted from audio (LLDs),

video (LPQ-TOP), 52 ECG features, and 22 EDA features

- Winner of AVEC 2015 challenge

- Valence (RMSE=0.104 and CC=0.616)

- Arousal (RMSE=0.121 and CC=0.753)

McDuff et al. [15] AM-FED
- HOG features extracted

- SVM with RBF kernel

- AUC 0.90, 0.72 and 0.70 for smile,

AU2 and AU4 respectively

Koelstra et al. [26] DEAP
- Gaussian naive Bayes classifier

- EEG, physiological signals, and multimedia features

- Binary classification of low/high arousal, valence, and liking

- 0.39 F1-score on Arousal

- 0.37 F1-score on Valence

- 0.40 F1-score on Liking

Fan et al. [47] AFEW
- Trained on both video and audio.

- VGG network are followed by LSTMs and combined with

3D convolution

- Winner of EmotiW 2016 challenge

- 56.16% accuracy on AFEW

Tang et al. [48] FER-2013 - CNN with linear one-vs-all SVM at the top
- Winner of the FER challenge

- 71.2% accuracy on test set

Benitez-Quiroz

et al. [22]
EmotioNet

- New face feature extraction method using Gabor filters

- KSDA classification

- Subject-independent and cross-database experiments

- ⇠80% AU detection on EmotioNet

Mollahosseini

et al. [20]
FER-Wild

- Trained on AlexNet

- Noise estimation methods used
- 82.12% accuracy on FER-Wild

2.2 Evaluation Metrics

There are various evaluation metrics in the literature to measure the reliability of annotation and automated

affective computing systems. Accuracy, F1-score [49], Cohens kappa [50], Krippendorfs Alpha [51], ICC [52],

area under the ROC curve (AUC), and area under Precision-Recall curve (AUC-PR) [53] are well-defined widely

used metrics for evaluation of the categorical and FACS-based models. Since, the dimensional model of affect

is usually evaluated in a continuous domain, different evaluation metrics are necessary. In the following, we

review several metrics that are used in the literature for evaluation of dimensional model.

Root Mean Square Error (RMSE) is the most common evaluation metric in a continuous domain which is

defined as:

RMSE =

vuut 1

n

nX

i=1

(✓̂i � ✓i)2 (1)
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where ✓̂i and ✓i are the prediction and the ground truth of ith sample, and n is the number of samples in

the evaluation set. RMSE-based evaluation can heavily weigh the outliers [54], and it is not able to provide

the covariance of prediction and ground-truth to show how they change with respect to each other. Pearsons

correlation coefficient is therefore proposed in some literature [24], [36], [37] to overcome this limitation:

CC =
COV {✓̂, ✓}

�✓̂�✓
=

E[(✓̂ � µ✓̂)(✓ � µ✓)]

�✓̂�✓
(2)

Concordance Correlation Coefficient (CCC) is another metric [40], [41] which combines the Pearsons corre-

lation coefficient (CC) with the square difference between the means of two compared time series:

⇢c =
2⇢�✓̂�✓

�2
✓̂
+ �2

✓ + (µ✓̂ � µ✓)2
(3)

where ⇢ is the Pearson correlation coefficient (CC) between two time-series (e.g., prediction and ground-truth),

�2
✓̂

and �2
✓ are the variance of each time series, and µ✓̂ and µ✓ are the mean value of each. Unlike CC, the

predictions that are well correlated with the ground-truth but shifted in value are penalized in proportion to

the deviation in CCC.

The value of valence and arousal are [-1,+1] and their signs are essential in many emotion-prediction

applications. For example, if the ground-truth valence is +0.3, prediction of +0.7 is far better than prediction of

-0.1, since +0.7 indicates a positive emotion similar to the ground-truth (despite both predictions have the same

RMSE). Sign Agreement Metric (SAGR) is another metric that is proposed in [24] to evaluate the performance

of a valence and arousal prediction system. SAGR is defined as:

SAGR =
1

n

nX

i=1

�(sign(✓̂i), sign(✓i)) (4)

where � is the Kronecker delta function, defined as:

�(a, b) =

8
><

>:

1, a = b

0, a 6= b
(5)

The above discussed metrics are used to evaluate the categorical and dimensional baselines on AffectNet in

Sec. 4.

2.3 Existing Algorithms

Affective computing is now a well-established field, and there are many algorithms and databases for develop-

ing automated affect perception systems. Since it is not possible to include all those great works, we only give

a brief overview and cover the state-of-the-art methods that are applied on the databases explained in Sec. 2.1.

Conventional algorithms of affective computing from faces use hand-crafted features such as pixel intensi-

ties [55], Gabor filters [56], Local Binary Patterns (LBP) [44], and Histogram of Oriented Gradients (HOG) [14].

These hand-crafted features often lack enough generalizability in the wild settings where there is a high

variation in scene lighting, camera view, image resolution, background, subjects head pose and ethnicity.

An alternative approach is to use Deep Neural Networks (DNN) to learn the most appropriate feature

abstractions directly from the data and handle the limitations of hand-crafted features. DNNs have been a
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Fig. 2. A screen-shot of the software application used to annotate categorical and dimensional (valence and arousal) models of affect

and the osculation tag if existing. Only one detected face in each image is annotated (shown in the green bounding box).

recent successful approach in visual object recognition [57], human pose estimation [58], face verification [59]

and many more. This success is mainly due to the availability of computing power and existing big databases

that allow DNNs to extract highly discriminative features from the data samples. There have been enormous

attempts on using DNNs in automated facial expression recognition and affective computing [20], [43], [46],

[47], [48] that are especially very successful in the wild settings.

Table 2 shows a list of the state-of-the-art algorithms and their performance on the databases listed in Table 1.

As shown in the table, the majority of these approaches have used DNNs to learn a better representation of

affect, especially in the wild settings. Even some of the approaches, such as the winner of the AVEC 2015

challenge [46], trained a DNN with hand-crafted features and still could improve the prediction accuracy.

3 AFFECTNET

AffectNet (Affect from the InterNet) is the largest database of the categorical and dimensional models of affect

in the wild (as shown in Table 1). The database is created by querying emotion related keywords from three

search engines and annotated by expert human labelers. In this section, the process of querying the Internet,

processing facial images and extracting facial landmarks, and annotating facial expression, valence, and arousal

of affect are discussed.

3.1 Facial Images from the Web

Emotion-related keywords were combined with words related to gender, age, or ethnicity, to obtain nearly 362

strings in the English language such as “joyful girl”, “blissful Spanish man”, “furious young lady”, “astonished

senior”. These keywords are then translated into five other languages: Spanish, Portuguese, German, Arabic

and Farsi. The direct translation of queries in English to other languages did not accurately result in the intended

emotions since each language and culture has differing words and expressions for different emotions. Therefore,
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the list of English queries was provided to native non-English speakers who were proficient in English, and

they created a list of queries for each emotion in their native language and inspected the quality of the results

visually. The criteria for high-quality queries were those that returned a high percentage of human faces showing

the intended queried emotions rather than drawings, graphics, or non-human objects. A total of 1250 search

queries were compiled and used to crawl the search engines in our database. Since a high percentage of results

returned by our query terms already contained neutral facial images, no individual query was performed to

obtain additional neutral face.

Three search engines (Google, Bing, and Yahoo) were queried with these 1250 emotion related tags. Other

search engines such as Baidu and Yandex were considered. However, they either did not produce a large

number of facial images with intended expressions or they did not have available APIs for automatically

querying and pulling image URLs into the database. Additionally, queries were combined with negative terms

(e.g., “drawing”, “cartoon”, “animation”, “birthday”, etc.) to avoid non-human objects as much as possible.

Furthermore, since the images of stock photo websites are posed unnaturally and contain watermarks mostly, a

list of popular stock photo websites was compiled and the results returned from the stock photo websites were

filtered out.

A total of ⇠1,800,000 distinct URLs returned for each query were stored in the database. The OpenCV face

recognition was used to obtain bounding boxes around each face. A face alignment algorithm via regression

local binary features [29], [30] was used to extract 66 facial landmark points. The facial landmark localization

technique was trained using the annotations provided from the 300W competition [60]. More than 1M images

containing at least one face with extracted facial landmark points were kept for further processing.

The average image resolution of faces in AffectNet are 425 ⇥ 425 with STD of 349 ⇥ 349 pixels. We used

Microsoft cognitive face API to extract these facial attributes on 50,000 randomly selected images from the

database. According to MS face API, 49% of the faces are men. The average estimated age of the faces is 33.01

years with the standard deviation of 16.96 years. In particular, 10.85, 3.9, 30.19, 26.86, 14.46, and 13.75 percent

of the faces are in age ranges [0, 10), [10, 20), [20, 30), [30, 40), [40, 50) and [50, -), respectively. MS face API

detected forehead, mouth, and eye occlusions in 4.5, 1.08, and 0.49 percent of the images, respectively. Also,

9.63% of the faces wear glasses, 51.07 and 41.4% of the faces have eye and lip make-ups, respectively. In terms

of head pose, the average estimated pitch, yaw, roll are 0.0,-0.7, and -1.19 degrees, respectively.

3.2 Annotation

Crowd-sourcing services like Amazon Mechanical Turk are fast, cheap and easy approaches for labeling large

databases. The quality of labels obtained from crowd-sourcing services, however, varies considerably among

the annotators. Due to these issues and the fact that annotating the valence and arousal requires a deep

understanding of the concept, we avoided crowd-sourcing facilities and instead hired 12 full-time and part-

time annotators at the University of Denver to label the database. A total of 450,000 images were given to these

expert annotators to label the face in the images into both discrete categorical and continuous dimensional

(valence and arousal) models. Due to time and budget constraints each image was annotated by one annotator.
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A software application was developed to annotate the categorical and dimensional (valence and arousal)

models of affect. Figure 2 shows a screen-shot of the annotation application. A comprehensive tutorial including

the definition of the categorical and dimensional models of affect with some examples of each category, valence

and arousal was given to the annotators. Three training sessions were provided to each annotator, in which the

annotator labeled the emotion category, valence and arousal of 200 images and the results were reviewed with

the annotators. Necessary feedback was given on both the categorical and dimensional labels. In addition, the

annotators tagged the images that have any occlusion on the face. The occlusion criterion was defined as if any

part of the face was not visible. If the person in the images wore glasses, but the eyes were visible without any

shadow, it was not considered as occlusion.

3.2.1 Categorical Model Annotation

Eleven discrete categories were defined in the categorical model of AffectNet as: Neutral, Happy, Sad, Surprise,

Fear, Anger, Disgust, Contempt, None, Uncertain, and Non-face. The None (“None of the eight emotions”)

category is the type of expression/emotions (such as sleepy, bored, tired, seducing, confuse, shame, focused,

etc.) that could not be assigned by annotators to any of the six basic emotions, contempt or neutral. However,

valence and arousal could be assigned to these images. The Non-face category was defined as images that: 1)

Do not contain a face in the image; 2) Contain a watermark on the face; 3) The face detection algorithm fails

and the bounding box is not around the face; 4) The face is a drawing, animation, or painted; and 5) The face

is distorted beyond a natural or normal shape, even if an expression could be inferred. If the annotators were

uncertain about any of the facial expressions, images were tagged as uncertain. When an image was annotated

as Non-face or uncertain, valence and arousal were not assigned to the image.

The annotators were instructed to select the proper expression category of the face, where the intensity

is not important as long as the face depicts the intended emotion. Table 3 shows the number of images in

each category. Table 4 indicates the percentage of annotated categories for queried emotion terms. As shown,

the happy emotion had the highest hit-rate (48%), and the rest of the emotions had hit-rates less than 20%.

About 15% of all query results were in the No-Face category, as many images from the web contain watermarks,

drawings, etc. About 15% of all queried emotions resulted in neutral faces. Among other expressions, disgust,

fear, and contempt had the lowest hit-rate with only 2.7%, 4%, and 2.4% hit-rates, respectively. As one can

see, the majority of the returned images from the search engines were happy or neutral faces. The authors

believe that this is because people tend to publish their images with positive expressions rather than negative

expressions. Figure 3 shows a sample image in each category and its intended queries (in parentheses).

3.2.2 Dimensional (Valence & Arousal) Annotation

The definition of valence and arousal dimensions was adapted from [3] and was given to annotators in our

tutorial as: “Valence refers to how positive or negative an event is, and arousal reflects whether an event is

exciting/agitating or calm/soothing”. A sample circumplex with estimated positions of several expressions,

borrowed from [61], was provided in the tutorial as a reference for the annotators. The provided circumplex in

the tutorial contained more than 34 complex emotions categories such as suspicious, insulted, impressed, etc.,
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TABLE 3

Number of Annotated Images in Each Category

Expression Number

Neutral 80,276

Happy 146,198

Sad 29,487

Surprise 16,288

Fear 8,191

Disgust 5,264

Anger 28,130

Contempt 5,135

None 35,322

Uncertain 13,163

Non-Face 88,895

TABLE 4

Percentage of Annotated Categories for Queried Emotion Terms (%)

Query Expression

HA SA SU FE DI AN CO

A
nn

ot
at

ed
Ex

pr
es

si
on

NE* 17.3 16.3 13.9 17.8 17.8 16.1 20.1

HA 48.9 27.2 30.4 28.6 33 29.5 30.1

SA 2.6 15.7 4.8 5.8 4.5 5.4 4.6

SU 2.7 3.1 16 4.4 3.6 3.4 4.1

FE 0.7 1.2 4.2 4 1.5 1.4 1.3

DI 0.6 0.7 0.7 0.9 2.7 1.1 1

AN 2.8 4.5 3.8 5.6 6 12.2 6.1

CO 1.3 0.9 0.4 1.1 1.1 1.2 2.4

NO 5.4 8.7 4.8 8.1 8.8 9.3 11.2

UN 1.3 3.1 4.3 3.1 4.1 3.7 2.7

NF 16.3 18.6 16.7 20.6 16.9 16.8 16.3

* NE, HA, SA, SU, FE, DI, AN, CO, NO, UN , and NF stand for Neutral,

Happy, Sad, Surprise, Fear, Anger, Disgust, Contempt, None, Uncertain,

and Non-face categories, respectively.

and used to train annotators. The annotators were instructed to consider the intensity of valence and arousal

during the annotation. During the annotation process, the annotators were supervised closely and constant

necessary feedback was provided when they were uncertain about some images.

To model the dimensional affect of valence and arousal, a 2D Cartesian coordinate system was used where

the x-axis and y-axis represent the valence and arousal, respectively. Similar to Russell’s circumplex space

model [3], our annotation software did not allow the value of valence and arousal outside of the circumplex.

This allows us to convert the Cartesian coordinates to polar coordinates with 0  r  1 and 0  ✓ < 360. The

annotation software showed the value of valence and arousal to the annotators when they selected a point in

the circumplex. This helped the annotators to pick more precise locations of valence and arousal with a higher
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Neutral (Angry) Happy (Happy) Sad (Angry) Surprise (Fear)

Fear (Fear) Disgust (Disgust) Angry (Angry) Contempt (Happy)

Non-face (Surprise) Uncertain (Sad) None (Fear) None (Happy)

Fig. 3. Samples of queried images from the web and their annotated tags. The queried expression is written in parentheses.

confidence.

A predefined estimated region of valence and arousal was defined for each categorical emotion in the

annotation software (e.g., for happy emotion the valence is in (0.0, 1.0], and the arousal is in [-0.2, 0.5] ). If the

annotators select a value of valence and arousal outside of the selected emotion’s region, the software indicates

a warning message. The annotators were able to proceed, and they were instructed to do so, if they were

confident about the value of valence and arousal. The images with the warning messages were marked in the

database, for further review by the authors. This helped to avoid mistakes in the annotation of the dimensional

model of affect.

Figure 4 shows the histogram (number of samples in each range/area) of annotated images in a 2D Cartesian

coordinate system. As illustrated, there are more samples in the center and the right middle (positive valence

and small positive arousal) of the circumplex, which confirms the higher number of Neutral and Happy images

in the database compared to other categories in the categorical model. 2

3.3 Annotation Agreement

In order to measure the agreement between the annotators, 36,000 images were annotated by two annotators.

The annotations were performed fully blind and independently, i.e., the annotators were not aware of the

intended query or other annotator’s response. The results showed that the annotators agreed on 60.7% of the

images. Table 6 shows the agreement between two annotators for different categories. As it is shown, the

annotators highly agreed on the Happy and No Face categories, and the highest disagreement occurred in the

None category. Visually inspecting some of the images in the None category, the authors believe that the images

2. A numerical representation of annotated images in each range/area of valence and arousal is provided in the Appendix.
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Fig. 4. Histogram (number of frames in each range/area) of valence and arousal annotations (Best viewed in color).

TABLE 5

Annotators’ Agreement in Dimensional Model of Affect

Same Category All

Valence Arousal Valence Arousal

RMSE 0.190 0.261 0.340 0.362

CORR 0.951 0.766 0.823 0.567

SAGR 0.906 0.709 0.815 0.667

CCC 0.951 0.746 0.821 0.551

in this category contain very subtle emotions and they can be easily confused with other categories (the last

two example of Fig. 3 show images in the None category).

Table 5 shows various evaluation metrics between the two annotators in the continuous dimensional model

of affect. These metrics are defined in Sec. 2.2. We calculated these metrics in two scenarios: 1) the annotators

agreed on the category of the image; 2) on all images that are annotated by two annotators. As Table 5 shows,

when the annotators agreed on the category of the image, the annotations have a high correlation and sign

agreement (SAGR). According to Table 6, this occurred on only 60.7% images. However, there is less correlation
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TABLE 6

Agreement Between Two Annotators in Categorical Model of Affect (%)

Neutral Happy Sad Surprise Fear Disgust Anger Contempt None Uncertain Non-Face

Neutral 50.8 7.0 9.1 2.8 1.1 1.0 4.8 5.3 11.1 1.9 5.1

Happy 6.3 79.6 0.6 1.7 0.3 0.4 0.5 3.0 4.6 1.0 2.2

Sad 11.8 0.9 69.7 1.2 3.4 1.3 4.0 0.3 3.5 1.2 2.6

Surprise 2.0 3.8 1.6 66.5 14.0 0.8 1.9 0.6 4.2 1.9 2.7

Fear 3.1 1.5 3.8 15.3 61.1 2.5 7.2 0.0 1.9 0.4 3.3

Disgust 1.5 0.8 3.6 1.2 3.5 67.6 13.1 1.7 2.7 2.3 2.1

Anger 8.1 1.2 7.5 1.7 2.9 4.4 62.3 1.3 5.5 1.9 3.3

Contempt 10.2 7.5 2.1 0.5 0.5 4.4 2.1 66.9 3.7 1.5 0.6

None 22.6 12.0 14.5 8.0 6.0 2.3 16.9 1.3 9.6 4.3 2.6

Uncertain 13.5 12.1 7.8 7.3 4.0 4.5 6.2 2.6 12.3 20.6 8.9

Non-Face 3.7 3.8 1.7 1.1 0.9 0.4 1.7 0.4 1.2 1.4 83.9

and SAGR on overall images, since the annotators had a different perception of emotions expressed in the

images. It can also be seen that the annotators agreed on valence more than arousal. The authors believe that

this is because the perception of valence (how positive or negative the emotion is) is easier and less subjective

than arousal (how excited or calm the subject is) especially in still images. Comparing the metrics in the

existing dimensional databases (shown in Table 2) with the agreement of human labelers on AffectNet, suggest

that AffectNet is a very challenging database and even human annotations have more RMSE than automated

methods on existing databases.

4 BASELINE

In this section, two baselines are proposed to classify images in the categorical model and predict the value

of valence and arousal in the continuous domain of dimensional model. Since deep Convolutional Neural

Networks (CNNs) have been a successful approach to learn appropriate feature abstractions directly from the

image and there are many samples in AffectNet necessary to train CNNs, we proposed two simple CNN base-

lines for both categorical and dimensional models. We also compared the proposed baselines with conventional

approaches (Support Vector Machines [62] and Support Vector Regressions [63]) learned from hand-crafted

features (HOG). In the following sections, we first introduce our training, validation and test sets, and then

show the performance of each proposed baselines.

4.1 Test, Validation, and Training Sets

Test set: The subset of the annotated images that are annotated by two annotators is reserved for the test set.

To determine the value of valence and arousal in the test set, since there are two responses for one image in the

continuous domain, one of the annotations is picked randomly. To select the category of image in the categorical

model, if there was a disagreement, a favor was given to the intended query, i.e., if one of the annotators labeled

the image as the intended query, the image was labeled with the intended query in the test set. This happened
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in 29.5% of the images with disagreement between the annotators. On the rest of the images with disagreement,

one of the annotations was assigned to the image randomly. Since the test set is a random sampling of all

images, it is heavily imbalanced. In other words, there are more than 11,000 images with happy expression

while it contains only 1,000 images with contemptuous expression.

Validation set: Five hundred samples of each category is selected randomly as a validation set. The

validation set is used for hyper-parameter tuning, and since it is balanced, there is no need for any skew

normalization.

Training set: The rest of images are considered as training examples. The training examples, as shown in

Table 3, are heavily imbalanced.

4.2 Categorical Model Baseline

Facial expression data is usually highly skewed. This form of imbalance is commonly referred to as intrinsic

variation, i.e., it is a direct result of the nature of expressions in the real world. This happens in both the

categorical and dimensional models of affect. For instance, Caridakis et al. [64] reported that a bias toward

quadrant 1 (positive arousal, positive valence) exists in the SAL database. The problem of learning from

imbalanced data sets has two challenges. First, training data with an imbalanced distribution often causes

learning algorithms to perform poorly on the minority class [65]. Second, the imbalance in the test/validation

data distribution can affect the performance metrics dramatically. Jeni et al. [53] studied the influence of skew

on imbalanced validation set. The study showed that with exception of area under the ROC curve (AUC), all

other studied evaluation metrics, i.e., Accuracy, F1-score, Cohens kappa [50], Krippendorfs Alpha [51], and

area under Precision-Recall curve (AUC-PR) are affected by skewed distributions dramatically. While AUC

is unaffected by skew, precision-recall curves suggested that AUC may mask poor performance. To avoid or

minimize skew-biased estimates of performance, the study suggested to report both skew-normalized scores

and the original evaluation.

We used AlexNet [57] architecture as our deep CNN baseline. AlexNet consists of five convolution layers,

followed by max-pooling and normalization layers, and three fully-connected layers. To train our baseline with

an imbalanced training set, four approaches are studied in this paper as Imbalanced learning, Down-Sampling, Up-

Sampling, and Weighted-Loss. The imbalanced learning approach was trained with the imbalanced training set

without any change in the skew of the dataset. To train the down-sampling approach, we selected a maximum

of 15,000 samples from each class. Since there are less than 15,000 samples for some classes such as Disgust,

Contempt, and Fear, the resulting training set is semi-balanced. To train the up-sampling approach, we heavily

up-sampled the under-represented classes by replicating their samples so that all classes had the same number

of samples as the class with maximum samples, i.e., Happy class.

The weighted-loss approach weighted the loss function for each of the classes by their relative proportion

in the training dataset. In other words, the loss function heavily penalizes the networks for misclassifying

examples from under-represented classes, while penalizing networks less for misclassifying examples from

well-represented classes. The entropy loss formulation for a training example (X, l) is defined as:
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TABLE 7

F1-Scores of four different approaches of training AlexNet

Imbalanced Down-Sampling Up-Sampling Weighted-Loss

Top-1 Top-2 Top-1 Top-2 Top-1 Top-2 Top-1 Top-2

Orig* Norm* Orig Norm Orig Norm Orig Norm Orig Norm Orig Norm Orig Norm Orig Norm

Neutral 0.63 0.49 0.82 0.66 0.58 0.49 0.78 0.70 0.61 0.50 0.81 0.64 0.57 0.52 0.81 0.77

Happy 0.88 0.65 0.95 0.80 0.85 0.68 0.92 0.85 0.85 0.71 0.95 0.80 0.82 0.73 0.92 0.88

Sad 0.63 0.60 0.84 0.81 0.64 0.60 0.81 0.78 0.6 0.57 0.81 0.77 0.63 0.61 0.83 0.81

Surprise 0.61 0.64 0.84 0.86 0.53 0.63 0.75 0.83 0.57 0.66 0.80 0.81 0.51 0.63 0.77 0.86

Fear 0.52 0.54 0.78 0.79 0.54 0.57 0.80 0.82 0.56 0.58 0.75 0.76 0.56 0.66 0.79 0.86

Disgust 0.52 0.55 0.76 0.78 0.53 0.64 0.74 0.81 0.53 0.59 0.70 0.72 0.48 0.66 0.69 0.83

Anger 0.65 0.59 0.83 0.80 0.62 0.60 0.79 0.78 0.63 0.59 0.81 0.77 0.60 0.60 0.81 0.81

Contempt 0.08 0.08 0.49 0.49 0.22 0.32 0.60 0.70 0.15 0.18 0.42 0.42 0.27 0.59 0.58 0.79

*Orig and Norm stand for Original and skew-Normalized, respectively.

E = �
KX

i=1

Hl,ilog(p̂i) (6)

where Hl,i denotes row l penalization factor of class i, K is the number of classes, and p̂i is the predictive

softmax with values [0, 1] indicating the predicted probability of each class as:

p̂i =
exp(xi)PK
j=1 exp(xj)

(7)

Equation (6) can be re-written as:
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The derivate with respect to the prediction xk is:
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When H = I , the identity, the proposed weighted-loss approach gives the traditional cross-entropy loss

function. We used the implemented Infogain loss in Caffe [66] for this purpose. For simplicity, we used a
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diagonal matrix defined as:

Hij =

8
><

>:

fi
fmin

, if i = j

0, otherwise
(10)

where fi is the number of samples of the ith class and fmin is the number of samples in the most under-

represented class, i.e., Disgust class in this situation.

Before training the network, the faces were cropped and resized to 256⇥256 pixels. No facial registration

was performed at this baseline. To augment the data, five crops of 224⇥224 and their horizontal flips were

extracted from the four corners and the center of the image at random during the training phase. The networks

were trained for 20 epochs using a batch size of 256. The base learning rate was set to 0.01, and decreased

step-wise by a factor of 0.1 every 10,000 iterations. We used a momentum of 0.9.

Table 7 shows the top-1 and top-2 F1-Scores for the imbalanced learning, down-sampling, up-sampling, and

weighted-loss approaches on the test set. Since the test set is imbalanced, both the skew-normalized and the

original scores are reported. The skew normalization is performed by random under-sampling of the classes

in the test set. This process is repeated 200 times, and the skew-normalized score is the average of the score

on multiple trials. As it is shown, the weighted-loss approach performed better than other approaches in the

skew-normalized fashion. The improvement is significant in under-represented classes, i.e., Contempt, Fear,

and Disgust. The imbalanced approach performed worst in the Contempt and Disgust categories since there

were a few training samples of these classes compared with other classes. The up-sampling approach also did

not classify the Contempt and Disgust categories well, since the training samples of these classes were heavily

up-sampled (almost 20 times), and the network was over-fitted to these samples. Hence the network lost its

generalization and performed poorly on these classes of the test set.

The confusion matrix of the weighted-loss approaches is shown in Table 8. The weighted-loss approach

classified the samples of Contempt and Disgust categories with an acceptable accuracy but did not perform

well in Happy and Neutral. This is because the network was not penalized enough for misclassifying examples

from these classes. We believe that a better formulation of the weight matrix H based on the number of samples

in the mini-batches or other data-driven approaches can improve the recognition of well-represented classes.

TABLE 8

Confusion Matrix of Weighted-Loss Approach on the Test Set

Predicted

NE HA SA SU FE DI AN CO

A
ct

ua
l

NE 53.3 2.8 9.8 8.7 1.7 2.5 10.4 10.9

HA 4.5 72.8 1.1 6.0 0.6 1.7 1.0 12.2

SA 13.0 1.3 61.7 3.6 5.8 4.4 9.2 1.2

SU 3.4 1.2 1.7 69.9 18.9 1.7 2.8 0.5

FE 1.5 1.5 4.6 13.5 70.4 4.2 4.3 0.2

DI 2.0 2.2 5.8 3.3 6.2 68.6 10.6 1.3

AN 6.2 1.2 5.0 3.2 5.8 11.1 65.8 1.9

CO 16.2 13.1 3.5 3.1 0.5 4.3 5.7 53.8
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Table 9 shows accuracy, F1-score, Cohens kappa, Krippendorfs Alpha, area under the ROC curve (AUC),

and area under the Precision-Recall curve (AUC-PR) on the test sets. Except for the accuracy, all the metrics are

calculated in a binary-class manner where the positive class contains the samples labeled by the given category,

and the negative class contains the rest. The reported result in Table 9 is the average of these metrics over eight

classes. The accuracy is defined in a multi-class manner in which the number of correct predictions is divided by

the total number of samples in the test set. The skew-normalization is performed by balancing the distribution

of classes in the test set using random under-sampling and averaging over 200 trials. Since the validation set is

balanced, there is no need for skew-normalization.

TABLE 9

Evaluation Metrics and Comparison of CNN baselines, SVM and MS Cognitive on Categorical Model of Affect on Test Set.

CNN Baselines
SVM MS Cognitive

Imbalanced Down-Sampling Up-Sampling Weighted-Loss

Orig Norm Orig Norm Orig Norm Orig Norm Orig Norm Orig Norm

Accuracy 0.72 0.54 0.68 0.58 0.68 0.57 0.64 0.63 0.60 0.37 0.68 0.48

F1-Score 0.57 0.52 0.56 0.57 0.56 0.55 0.55 0.62 0.37 0.31 0.51 0.45

Kappa 0.53 0.46 0.51 0.51 0.52 0.49 0.5 0.57 0.32 0.25 0.46 0.40

Alpha 0.52 0.45 0.51 0.51 0.51 0.48 0.5 0.57 0.31 0.22 0.46 0.37

AUC 0.85 0.80 0.82 0.85 0.82 0.84 0.86 0.86 0.77 0.70 0.83 0.77

AUCPR 0.56 0.55 0.54 0.57 0.55 0.56 0.58 0.64 0.39 0.37 0.52 0.50

We compared the performance of CNN baseline with a Support Vector Machine (SVM) [62]. To train SVM,

the faces in the images were cropped and resized to 256⇥256 pixels. HOG [67] features were extracted with the

cell size of 8. We applied PCA retaining 95% of the variance to reduce the HOG features dimensionality from

36,864 to 6,697 features. We used a linear kernel SVM in Liblinear package [68] (which is optimized for large-

scale linear classification and regression). Table 9 shows the evaluation metrics of SVM. Reported AUC and

AUCPR values for SVM are calculated using the LibLinear’s resulting decision values. We calculated the scores

of predictions using a posterior-probability transformation sigmoid function. Comparing the performance of

SVM with the CNN baselines on AffectNet, indicates that CNN models perform better than conventional SVM

and HOG features in all metrics.

We also compared the baseline with an available off-the-shelf expression recognition system (Microsoft

Cognitive Services emotion API [69]). The MS cognitive system had an excellent performance on Neutral and

Happy categories with an accuracy of 0.94 and 0.85, respectively. However, it performed poorly on other

classes with an accuracy of 0.25, 0.27 and 0.04 in the Fear, Disgust and Contempt categories. Table 9 shows

the evaluation metrics on the MS cognitive system. Comparing the performance of the MS cognitive with the

simple baselines on AffectNet indicates that AffectNet is a challenging database and a great resource to further

improve the performance of facial expression recognition systems.

Figure 5 shows nine samples of randomly selected misclassified images of the weighted-loss approach and

their corresponding ground-truth. As the figure shows, it is really difficult to assign some of the emotions to

a single category. Some of the faces have partial similarities in facial features to the misclassified images, such
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Angry (Disgust) Disgust (Angry) Fear (Sad) Angry (Sad)

Happy (Surprise) Fear (Surprise) Surprise (Fear) Angry (Fear)

Angry (Disgust) Happy (Neutral) Sad (Angry) Happy (Contempt)

Fig. 5. Samples of miss-classified images. Their corresponding ground-truth is given in parentheses.

as nose wrinkled in disgust, or eyebrows raised in surprise. This emphasizes the fact that classifying facial

expressions in the wild is a challenging task and, as mentioned before, even human annotators agreed on only

60.7% of the images.

4.3 Dimensional Model (Valence and Arousal) Baseline

Predicting dimensional model in the continuous domain is a real-valued regression problem. We used AlexNet [57]

architecture as our deep CNN baseline to predict the value of valence and arousal. Particularly, two separate

AlexNets were trained where the last fully-connected layer was replaced with a linear regression layer contain-

ing only one neuron. The output of the neuron predicted the value of valence/arousal in continuous domain

[-1,1]. A Euclidean (L2) loss was used to measure the distance between the predicted value (ŷn) and actual

value of valence/arousal (yn) as:

E =
1

2N

NX

n=1

||ŷn � yn||22 (11)

The faces were cropped and resized to 256⇥256 pixels. The base learning rate was fixed and set to 0.001

during the training process. We used a momentum of 0.9. Training was continued until a plateau was reached

in the Euclidean error of the validation set (approximately 16 epochs with a mini-batch size of 256). Figure 6

shows the value of training and validation losses over 16K iterations (about 16 epochs).

We also compared Support Vector Regression (SVR) [63] with our DNN baseline for predicting valence and

arousal in AffectNet. In our experiments, first, the faces in the images were cropped and resized to 256⇥256

pixels. Histogram of Oriented Gradient (HOG) [67] features were extracted with the cell size of 8. Afterward,

we applied PCA retaining 95% of the variance of these features to reduce the dimensionality. Two separate

SVRs were trained to predict the value of valence and arousal. Liblinear [68] package was used to implement

SVR baseline.
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Fig. 6. Euclidean error of training valence and arousal.

TABLE 10

Baselines’ Performances of Predicting Valence and Arousal on Test Set

CNN (AlexNet) SVR

Valence Arousal Valence Arousal

RMSE 0.394 0.402 0.494 0.400

CORR 0.602 0.539 0.429 0.360

SAGR 0.728 0.670 0.619 0.748

CCC 0.541 0.450 0.340 0.199

Table 10 shows the performances of the proposed baseline and SVR on the test set. As shown, the CNN

baseline can predict the value of valence and arousal better than SVR. This is because the high variety of

samples in AffectNet allows the CNN to extract more discriminative features than hand-crafted HOG, and

therefore it learned a better representation of dimensional affect.

The RMSE of CNN baseline (AlexNet) between the predicted valence and arousal and the ground-truth are

shown in Fig. 7. As illustrated, the CNN baseline has a lower error rate in the center of circumplex. In particular,

predicting low-valence mid-arousal and low-arousal mid-valence areas were more challenging. These areas

correspond to the expressions of contempt, bored, and sleepy. It should be mentioned that predicting valence

and arousal in the wild is a challenging task, and as discussed in Sec. 3.3, the disagreement between two human

annotators has RMSE=0.367 and RMSE=0.481 for valence and arousal, respectively.

5 CONCLUSION

The analysis of human facial behavior is a very complex and challenging problem. The majority of the

techniques for automated facial affect analysis are mainly based on machine learning methodologies, and their

performance highly depends on the amount and diversity of annotated training samples. Recently, databases

of facial expression and affect in the wild received much attention. However, existing databases of facial affect

in the wild only cover one model of affect, have a limited number of subjects, or contain few samples of certain

emotions.

The Internet is a vast source of facial images, most of which are captured in uncontrolled conditions. These

images are often taken in the wild under natural conditions. In this paper, we introduced a new publicly
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Fig. 7. RMSE of predicted valence and arousal using AlexNet and Euclidean (L2) loss (Best viewed in color).

available database of a facial Affect from the InterNet (called AffectNet) by querying different search engines

using emotion related tags in six different languages. AffectNet contains more than 1M images with faces and

extracted landmark points. Twelve human experts manually annotated 450,000 of these images in both the

categorical and dimensional (valence and arousal) models and tagged the images that have any occlusion on

the face.

The agreement level of human labelers on a subset of AffectNet showed that expression recognition and

predicting valence and arousal in the wild is a challenging task. The two annotators agreed on 60.7% of

the category of facial expressions, and there was a large disagreement on the value of valence and arousal

(RMSE=0.34 and 0.36) between the two annotators.

Two simple deep neural network baselines were examined to classify the facial expression images and

predict the value of valence and arousal in the continuous domain of dimensional model. Evaluation metrics

showed that simple deep neural network baselines trained on AffectNet can perform better than conventional

machine learning methods and available off-the-shelf expression recognition systems. AffectNet is by far the

largest database of facial expression, valence and arousal in the wild, enabling further progress in the auto-

matic understanding of facial behavior in both categorical and continuous dimensional space. The interested

investigators can study categorical and dimensional models in the same corpus, and possibly co-train them to

improve the performance of their affective computing systems. It is highly anticipated that the availability of

this database for the research community, along with the recent advances in deep neural networks, can improve

the performance of automated affective computing systems in recognizing facial expressions and predicting

valence and arousal.



IEEE TRANSACTIONS ON AFFECTIVE COMPUTING 23

ACKNOWLEDGMENTS

This work is partially supported by the NSF grants IIS-1111568 and CNS-1427872. We gratefully acknowledge

the support of NVIDIA Corporation with the donation of the Tesla K40 GPUs used for this research.

REFERENCES

[1] J. Tao and T. Tan, “Affective computing: A review,” in International Conference on Affective Computing and Intelligent Interaction.

Springer, 2005, pp. 981–995. 1

[2] P. Ekman and W. V. Friesen, “Constants across cultures in the face and emotion.” Journal of personality and social psychology,

vol. 17, no. 2, p. 124, 1971. 1

[3] J. A. Russell, “A circumplex model of affect,” Journal of Personality and Social Psychology, vol. 39, no. 6, pp. 1161–1178, 1980. 1,

11, 12

[4] P. Ekman and W. V. Friesen, “Facial action coding system,” 1977. 1

[5] W. V. Friesen and P. Ekman, “Emfacs-7: Emotional facial action coding system,” Unpublished manuscript, University of California

at San Francisco, vol. 2, p. 36, 1983. 1

[6] S. Du, Y. Tao, and A. M. Martinez, “Compound facial expressions of emotion,” Proceedings of the National Academy of Sciences,

vol. 111, no. 15, pp. E1454–E1462, 2014. 1, 5

[7] M. Lyons, S. Akamatsu, M. Kamachi, and J. Gyoba, “Coding facial expressions with gabor wavelets,” in Automatic Face and

Gesture Recognition, 1998. Proceedings. Third IEEE International Conference on. IEEE, 1998, pp. 200–205. 2, 3

[8] Y.-I. Tian, T. Kanade, and J. F. Cohn, “Recognizing action units for facial expression analysis,” IEEE Trans. Pattern Anal. Mach.

Intell., vol. 23, no. 2, pp. 97–115, 2001. 2, 3

[9] P. Lucey, J. F. Cohn, T. Kanade, J. Saragih, Z. Ambadar, and I. Matthews, “The extended cohn-kanade dataset (ck+): A complete

dataset for action unit and emotion-specified expression,” in Computer Vision and Pattern Recognition Workshops (CVPRW), 2010

IEEE Computer Society Conference on. IEEE, 2010, pp. 94–101. 2, 3, 4, 5

[10] M. Pantic, M. Valstar, R. Rademaker, and L. Maat, “Web-based database for facial expression analysis,” in Multimedia and Expo,

2005. ICME 2005. IEEE International Conference on. IEEE, 2005, pp. 5–pp. 2, 3, 4

[11] R. Gross, I. Matthews, J. Cohn, T. Kanade, and S. Baker, “Multi-pie,” Image and Vision Computing, vol. 28, no. 5, pp. 807–813,

2010. 2, 3, 4

[12] J. F. Cohn and K. L. Schmidt, “The timing of facial motion in posed and spontaneous smiles,” International Journal of Wavelets,

Multiresolution and Information Processing, vol. 2, no. 02, pp. 121–132, 2004. 2

[13] M. F. Valstar, M. Pantic, Z. Ambadar, and J. F. Cohn, “Spontaneous vs. posed facial behavior: automatic analysis of brow

actions,” in Proceedings of the 8th international conference on Multimodal interfaces. ACM, 2006, pp. 162–170. 2

[14] S. M. Mavadati, M. H. Mahoor, K. Bartlett, P. Trinh, and J. F. Cohn, “Disfa: A spontaneous facial action intensity database,”

Affective Computing, IEEE Transactions on, vol. 4, no. 2, pp. 151–160, 2013. 2, 3, 4, 5, 8

[15] D. McDuff, R. Kaliouby, T. Senechal, M. Amr, J. Cohn, and R. Picard, “Affectiva-mit facial expression dataset (am-fed):

Naturalistic and spontaneous facial expressions collected,” in Proceedings of the IEEE Conference on Computer Vision and Pattern

Recognition Workshops, 2013, pp. 881–888. 2, 3, 4, 5, 7

[16] I. Sneddon, M. McRorie, G. McKeown, and J. Hanratty, “The belfast induced natural emotion database,” IEEE Transactions on

Affective Computing, vol. 3, no. 1, pp. 32–41, 2012. 2, 3, 5

[17] J. F. Grafsgaard, J. B. Wiggins, K. E. Boyer, E. N. Wiebe, and J. C. Lester, “Automatically recognizing facial expression: Predicting

engagement and frustration.” in EDM, 2013, pp. 43–50. 2

[18] A. Dhall, R. Goecke, J. Joshi, M. Wagner, and T. Gedeon, “Emotion recognition in the wild challenge 2013,” in Proceedings of the

15th ACM on International conference on multimodal interaction. ACM, 2013, pp. 509–516. 2, 3, 4

[19] I. J. Goodfellow, D. Erhan, P. L. Carrier, A. Courville, M. Mirza, B. Hamner, W. Cukierski, Y. Tang, D. Thaler, D.-H. Lee et al.,

“Challenges in representation learning: A report on three machine learning contests,” Neural Networks, vol. 64, pp. 59–63, 2015.

2, 4



IEEE TRANSACTIONS ON AFFECTIVE COMPUTING 24

[20] A. Mollahosseini, B. Hasani, M. J. Salvador, H. Abdollahi, D. Chan, and M. H. Mahoor, “Facial expression recognition from

world wild web,” in The IEEE Conference on Computer Vision and Pattern Recognition (CVPR) Workshops, June 2016. 2, 4, 5, 7, 9

[21] S. Zafeiriou, A. Papaioannou, I. Kotsia, M. A. Nicolaou, and G. Zhao, “Facial affect “in-the-wild”: A survey and a new database,”

in International Conference on Computer Vision and Pattern Recognition (CVPR) Workshops, Affect ”in-the-wild” Workshop, June 2016.

2, 4, 5, 6

[22] C. F. Benitez-Quiroz, R. Srinivasan, and A. M. Martinez, “Emotionet: An accurate, real-time algorithm for the automatic

annotation of a million facial expressions in the wild,” in Proceedings of IEEE International Conference on Computer Vision &

Pattern Recognition (CVPR16), Las Vegas, NV, USA, 2016. 2, 4, 5, 7

[23] M. A. Nicolaou, H. Gunes, and M. Pantic, “Audio-visual classification and fusion of spontaneous affective data in likelihood

space,” in Pattern Recognition (ICPR), 2010 20th International Conference on. IEEE, 2010, pp. 3695–3699. 4

[24] ——, “Continuous prediction of spontaneous affect from multiple cues and modalities in valence-arousal space,” IEEE

Transactions on Affective Computing, vol. 2, no. 2, pp. 92–105, 2011. 4, 7, 8

[25] F. Ringeval, A. Sonderegger, J. Sauer, and D. Lalanne, “Introducing the recola multimodal corpus of remote collaborative and

affective interactions,” in Automatic Face and Gesture Recognition (FG), 2013 10th IEEE International Conference and Workshops on.

IEEE, 2013, pp. 1–8. 4, 5, 6

[26] S. Koelstra, C. Muhl, M. Soleymani, J.-S. Lee, A. Yazdani, T. Ebrahimi, T. Pun, A. Nijholt, and I. Patras, “Deap: A database for

emotion analysis; using physiological signals,” IEEE Transactions on Affective Computing, vol. 3, no. 1, pp. 18–31, 2012. 4, 6, 7

[27] A. Dhall, R. Goecke, S. Lucey, and T. Gedeon, “Static facial expression analysis in tough conditions: Data, evaluation protocol

and benchmark,” in Computer Vision Workshops (ICCV Workshops), 2011 IEEE International Conference on. IEEE, 2011, pp. 2106–

2112. 4

[28] A. Mollahosseini and M. H. Mahoor, “Bidirectional warping of active appearance model,” in Computer Vision and Pattern

Recognition Workshops (CVPRW), 2013 IEEE Conference on. IEEE, 2013, pp. 875–880. 5

[29] S. Ren, X. Cao, Y. Wei, and J. Sun, “Face alignment at 3000 fps via regressing local binary features,” in Proceedings of the IEEE

Conference on Computer Vision and Pattern Recognition, 2014, pp. 1685–1692. 5, 10

[30] L. Yu, “face-alignment-in-3000fps,” https://github.com/yulequan/face-alignment-in-3000fps, 2016. 5, 10

[31] G. A. Miller, “Wordnet: a lexical database for english,” Communications of the ACM, vol. 38, no. 11, pp. 39–41, 1995. 5

[32] P. Viola and M. J. Jones, “Robust real-time face detection,” International journal of computer vision, vol. 57, no. 2, pp. 137–154,

2004. 5

[33] D. You, O. C. Hamsici, and A. M. Martinez, “Kernel optimization in discriminant analysis,” IEEE Trans. Pattern Anal. Mach.

Intell., vol. 33, no. 3, pp. 631–638, 2011. 5

[34] P. Lucey, J. F. Cohn, K. M. Prkachin, P. E. Solomon, and I. Matthews, “Painful data: The unbc-mcmaster shoulder pain expression

archive database,” in Automatic Face & Gesture Recognition and Workshops (FG 2011), 2011 IEEE International Conference on. IEEE,

2011, pp. 57–64. 5

[35] M. M. Bradley and P. J. Lang, “Measuring emotion: the self-assessment manikin and the semantic differential,” Journal of behavior

therapy and experimental psychiatry, vol. 25, no. 1, pp. 49–59, 1994. 6

[36] B. Schuller, M. Valstar, F. Eyben, G. McKeown, R. Cowie, and M. Pantic, “Avec 2011–the first international audio/visual emotion

challenge,” in International Conference on Affective Computing and Intelligent Interaction. Springer, 2011, pp. 415–424. 6, 8

[37] B. Schuller, M. Valster, F. Eyben, R. Cowie, and M. Pantic, “Avec 2012: the continuous audio/visual emotion challenge,” in

Proceedings of the 14th ACM international conference on Multimodal interaction. ACM, 2012, pp. 449–456. 6, 8

[38] M. Valstar, B. Schuller, K. Smith, F. Eyben, B. Jiang, S. Bilakhia, S. Schnieder, R. Cowie, and M. Pantic, “Avec 2013: the continuous

audio/visual emotion and depression recognition challenge,” in Proceedings of the 3rd ACM international workshop on Audio/visual

emotion challenge. ACM, 2013, pp. 3–10. 6

[39] M. Valstar, B. Schuller, K. Smith, T. Almaev, F. Eyben, J. Krajewski, R. Cowie, and M. Pantic, “Avec 2014: 3d dimensional affect

and depression recognition challenge,” in Proceedings of the 4th International Workshop on Audio/Visual Emotion Challenge. ACM,

2014, pp. 3–10. 6

[40] F. Ringeval, B. Schuller, M. Valstar, R. Cowie, and M. Pantic, “Avec 2015: The 5th international audio/visual emotion challenge

and workshop,” in Proceedings of the 23rd ACM international conference on Multimedia. ACM, 2015, pp. 1335–1336. 6, 8



IEEE TRANSACTIONS ON AFFECTIVE COMPUTING 25

[41] M. Valstar, J. Gratch, B. Schuller, F. Ringeval, D. Lalanne, M. T. Torres, S. Scherer, G. Stratou, R. Cowie, and M. Pantic, “Avec

2016-depression, mood, and emotion recognition workshop and challenge,” arXiv preprint arXiv:1605.01600, 2016. 6, 8

[42] G. McKeown, M. Valstar, R. Cowie, M. Pantic, and M. Schroder, “The semaine database: Annotated multimodal records of

emotionally colored conversations between a person and a limited agent,” IEEE Transactions on Affective Computing, vol. 3, no. 1,

pp. 5–17, 2012. 6

[43] A. Mollahosseini, D. Chan, and M. H. Mahoor, “Going deeper in facial expression recognition using deep neural networks,”

IEEE Winter Conference on Applications of Computer Vision (WACV), 2016. 7, 9

[44] C. Shan, S. Gong, and P. W. McOwan, “Facial expression recognition based on local binary patterns: A comprehensive study,”

Image and Vision Computing, vol. 27, no. 6, pp. 803–816, 2009. 7, 8

[45] X. Zhang, M. H. Mahoor, and S. M. Mavadati, “Facial expression recognition using {l} {p}-norm mkl multiclass-svm,”

Machine Vision and Applications, pp. 1–17, 2015. 7

[46] L. He, D. Jiang, L. Yang, E. Pei, P. Wu, and H. Sahli, “Multimodal affective dimension prediction using deep bidirectional long

short-term memory recurrent neural networks,” in Proceedings of the 5th International Workshop on Audio/Visual Emotion Challenge.

ACM, 2015, pp. 73–80. 7, 9

[47] Y. Fan, X. Lu, D. Li, and Y. Liu, “Video-based emotion recognition using cnn-rnn and c3d hybrid networks,” in Proceedings of

the 18th ACM International Conference on Multimodal Interaction. ACM, 2016, pp. 445–450. 7, 9

[48] Y. Tang, “Deep learning using linear support vector machines,” arXiv preprint arXiv:1306.0239, 2013. 7, 9

[49] M. Sokolova, N. Japkowicz, and S. Szpakowicz, “Beyond accuracy, f-score and roc: a family of discriminant measures for

performance evaluation,” in Australasian Joint Conference on Artificial Intelligence. Springer, 2006, pp. 1015–1021. 7

[50] J. Cohen, “A coefficient of agreement for nominal scales,” Educational and Psychological Measurement, vol. 20, no. 1, p. 37, 1960.

7, 16

[51] K. Krippendorff, “Estimating the reliability, systematic error and random error of interval data,” Educational and Psychological

Measurement, vol. 30, no. 1, pp. 61–70, 1970. 7, 16

[52] P. E. Shrout and J. L. Fleiss, “Intraclass correlations: uses in assessing rater reliability.” Psychological bulletin, vol. 86, no. 2, p.

420, 1979. 7

[53] L. A. Jeni, J. F. Cohn, and F. De La Torre, “Facing imbalanced data–recommendations for the use of performance metrics,” in

Affective Computing and Intelligent Interaction (ACII), 2013 Humaine Association Conference on. IEEE, 2013, pp. 245–251. 7, 16

[54] S. Bermejo and J. Cabestany, “Oriented principal component analysis for large margin classifiers,” Neural Networks, vol. 14,

no. 10, pp. 1447–1461, 2001. 8

[55] M. Mohammadi, E. Fatemizadeh, and M. H. Mahoor, “Pca-based dictionary building for accurate facial expression recognition

via sparse representation,” Journal of Visual Communication and Image Representation, vol. 25, no. 5, pp. 1082–1092, 2014. 8

[56] C. Liu and H. Wechsler, “Gabor feature based classification using the enhanced fisher linear discriminant model for face

recognition,” IEEE Trans. Image Process., vol. 11, no. 4, pp. 467–476, 2002. 8

[57] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “Imagenet classification with deep convolutional neural networks,” in Advances

in neural information processing systems, 2012, pp. 1097–1105. 9, 16, 20

[58] A. Toshev and C. Szegedy, “Deeppose: Human pose estimation via deep neural networks,” in Computer Vision and Pattern

Recognition (CVPR), 2014 IEEE Conference on. IEEE, 2014, pp. 1653–1660. 9

[59] Y. Taigman, M. Yang, M. Ranzato, and L. Wolf, “Deepface: Closing the gap to human-level performance in face verification,” in

Computer Vision and Pattern Recognition (CVPR), 2014 IEEE Conference on. IEEE, 2014, pp. 1701–1708. 9

[60] C. Sagonas, E. Antonakos, G. Tzimiropoulos, S. Zafeiriou, and M. Pantic, “300 faces in-the-wild challenge: Database and results,”

Image and Vision Computing, vol. 47, pp. 3–18, 2016. 10

[61] G. Paltoglou and M. Thelwall, “Seeing stars of valence and arousal in blog posts,” IEEE Transactions on Affective Computing,

vol. 4, no. 1, pp. 116–123, 2013. 11

[62] C. Cortes and V. Vapnik, “Support-vector networks,” Machine learning, vol. 20, no. 3, pp. 273–297, 1995. 15, 19

[63] A. Smola and V. Vapnik, “Support vector regression machines,” Advances in neural information processing systems, vol. 9, pp.

155–161, 1997. 15, 20

[64] G. Caridakis, K. Karpouzis, and S. Kollias, “User and context adaptive neural networks for emotion recognition,” Neurocomput-

ing, vol. 71, no. 13, pp. 2553–2562, 2008. 16



IEEE TRANSACTIONS ON AFFECTIVE COMPUTING 26

[65] H. He and E. A. Garcia, “Learning from imbalanced data,” IEEE Trans. Knowl. Data Eng., vol. 21, no. 9, pp. 1263–1284, 2009. 16

[66] Y. Jia, E. Shelhamer, J. Donahue, S. Karayev, J. Long, R. Girshick, S. Guadarrama, and T. Darrell, “Caffe: Convolutional

architecture for fast feature embedding,” in Proceedings of the 22nd ACM international conference on Multimedia. ACM, 2014, pp.

675–678. 17

[67] N. Dalal and B. Triggs, “Histograms of oriented gradients for human detection,” in 2005 IEEE Computer Society Conference on

Computer Vision and Pattern Recognition (CVPR’05), vol. 1. IEEE, 2005, pp. 886–893. 19, 20

[68] R.-E. Fan, K.-W. Chang, C.-J. Hsieh, X.-R. Wang, and C.-J. Lin, “Liblinear: A library for large linear classification,” Journal of

machine learning research, vol. 9, no. Aug, pp. 1871–1874, 2008. 19, 20

[69] “Microsoft cognitive services - emotion api,” https://www.microsoft.com/cognitive-services/en-us/emotion-api, (Accessed

on 12/01/2016). 19

Ali Mollahosseini received the BSc degree in computer software engineering from the Iran University of

Science and Technology, Iran, in 2006, and the MSc degree in computer engineering - artificial intelligence

from AmirKabir University, Iran, in 2010. He is currently working toward the Ph.D. degree and is a graduate

research assistant in the Department of Electrical and Computer Engineering at the University of Denver. His

research interests include deep neural networks for the analysis of facial expression, developing humanoid

social robots and computer vision.

Behzad Hasani received the BSc degree in computer hardware engineering from Khaje Nasir Toosi University

of Technology, Tehran, Iran, in 2013, and the MSc degree in computer engineering - artificial intelligence from

Iran University of Science and Technology, Tehran, Iran, in 2015. He is currently pursuing his Ph.D. degree

in electrical & computer engineering and is a graduate research assistant in the Department of Electrical and

Computer Engineering at the University of Denver. His research interests include Computer Vision, Machine

Learning, and Deep Neural Networks, especially on facial expression analysis.

Mohammad H. Mahoor received the BS degree in electronics from the Abadan Institute of Technology, Iran,

in 1996, the MS degree in biomedical engineering from the Sharif University of Technology, Iran, in 1998, and

the Ph.D. degree in electrical and computer engineering from the University of Miami, Florida, in 2007. He

is an Associate Professor of Electrical and Computer Engineering at DU. He does research in the area of

computer vision and machine learning including visual object recognition, object tracking and pose estimation,

motion estimation, 3D reconstruction, and human-robot interaction (HRI) such as humanoid social robots for

interaction and intervention with children with special needs (e.g., autism) and elderly with depression and

dementia. He has received over $3M of research funding from state and federal agencies including the National Science Foundation.

He is a Senior Member of IEEE and has published about 100 conference and journal papers.



IEEE TRANSACTIONS ON AFFECTIVE COMPUTING 27

APPENDIX A

TABLE 11

Samples of Annotated Categories for Queried Emotion Terms

Queried Expression

Happy Sad Surprise Fear Disgust Anger Contempt

A
nn

ot
at

ed
Ex

pr
es

si
on

Neutral

Happy

Sad

Surprise

Fear

Disgust

Anger

Contempt

None

Uncertain

Non-Face
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TABLE 12

Samples of Annotated Images by Two Annotators (Randomly selected)

Annotator 1

Neutral Happy Sad Surprise Fear Disgust Anger Contempt None Uncertain Non-Face

A
nn

ot
at

or
2

Neutral

Happy

Sad

Surprise

Fear

Disgust

Anger

Contempt

None

Uncertain

Non-Face

TABLE 13

Agreement percentage between Two Annotators in Categorical Model of Affect (%)

A1* A2 A3 A4 A5 A6 A7 A8 A9 A10 A11 A12

A1 0.0** 69 70 68 0 0 0 0 0 0 0 0

A2 69 0 64.9 68.3 0 0 0 64.7 0 0 0 0

A3 70 64.9 0 70.6 67.4 69.9 63 62.3 0 48.1 0 0

A4 68 68.3 70.6 0 70.4 70.8 64.3 67.5 0 27.5 0 0

A5 0 0 67.4 70.4 0 70.6 0 0 0 0 0 0

A6 0 0 69.9 70.8 70.6 0 0 0 0 0 0 0

A7 0 0 63 64.3 0 0 0 0 0 75.8 0 0

A8 0 64.7 62.3 67.5 0 0 0 0 51.1 0 0 0

A9 0 0 0 0 0 0 0 51.1 0 0 54.4 0

A10 0 0 48.1 27.5 0 0 75.8 0 0 87.5 0 61.9

A11 0 0 0 0 0 0 0 0 54.4 0 0 0

A12 0 0 0 0 0 0 0 0 0 61.9 0 0

* A1 to A12 indicate Annotators 1 to 12

** Zero means that there were no common images between the two annotators
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Va
le

nc
e

Arousal

V: 0.0  A: -0.98

V:  -0.47  A: -0.73

V: 0.7  A: -0.73

V: 0.23  A: -0.65

V: -0.3  A: -0.35
V: -0.85  A: -0.38

V:  -0.95  A: 0.19

V:  -0.77  A: 0.45

V: -0.6  A: 0.75

V: -0.35  A: 0.28

V: -0.2  A: 0.87

V: 0.0  A: 0.0

V: 0.2  A: 0.85

V:  0.35  A: 0.3

V:  0.68  A: 0.66

V: 0.95  A: 0.17

V: 0.1  A: 0.46

V: -0.55  A: -0.1

V: 0.4  A: -0.41

V: 0.97  A: -0.1

V: 0.1  A: -0.85

V: 0.3  A: 0.62V: -0.4  A: 0.6

V: -0.12  A: -0.75

V: -0.55  A: -0.6

Fig. 8. Sample images in Valence Arousal circumplex with their corresponding Valence and Arousal values (V: Valence, A: Arousal).
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TABLE 14

Number of annotated images in each range/area of valence and arousal

Valence

[-1,-.8] [-.8,-.6] [-.6,-.4] [-.4,-.2] [-.2,0] [0,.2] [.2,.4] [.4,.6] [.6,.8] [.8,1]
A

ro
us

al

[.8,1] 0 0 21 674 1021 521 60 57 0 0

[.6,.8] 0 74 161 561 706 1006 432 738 530 0

[.4,.6] 638 720 312 505 2689 1905 1228 992 3891 957

[.2,.4] 6770 9283 3884 2473 5530 2296 3506 1824 2667 1125

[0,.2] 3331 1286 2971 4854 14083 15300 4104 9998 13842 9884

[-.2,0] 395 577 5422 3675 9024 23201 6237 42219 23281 21040

[-.4,-.2] 787 1364 3700 6344 2804 1745 821 5241 10619 9934

[-.6,-.4] 610 7800 2645 3571 2042 2517 1993 467 1271 921

[-.8,-.6] 0 3537 8004 4374 5066 3379 4169 944 873 0

[-1,-.8] 0 0 4123 1759 4836 1845 1672 739 0 0

TABLE 15

Evaluation Metrics and Comparison of CNN baselines, SVM and MS Cognitive on Categorical Model of Affect on the Validation Set.

CNN Baselines
SVM MS Cognitive

Imbalanced Down-Sampling Up-Sampling Weighted-Loss

Accuracy 0.40 0.50 0.47 0.58 0.30 0.37

F 1-Score 0.34 0.49 0.44 0.58 0.24 0.33

Kappa 0.32 0.42 0.38 0.51 0.18 0.27

Alpha 0.39 0.42 0.37 0.51 0.13 0.23

AUCPR 0.42 0.48 0.44 0.56 0.30 0.38

AUC 0.74 0.47 0.75 0.82 0.68 0.70

TABLE 16

Baselines’ Performances of Predicting Valence and Arousal on the Validation Set

CNN (AlexNet) SVR

Valence Arousal Valence Arousal

RMSE 0.37 0.41 0.55 0.42

CORR 0.66 0.54 0.35 0.31

SAGR 0.74 0.65 0.57 0.68

CCC 0.60 0.34 0.30 0.18


